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Abstract. How long should we run a stochastic global optimisation algorithm such as simulated
annealing? How should we tune such an algorithm? This paper proposes an approach to the study
of these questions through successive approximation of a generic stochastic global optimisation
algorithm with a sequence of stochastic processes, culminating in a backtracking adaptive search
process. Our emerging understanding of backtracking adaptive search can thus be used to study
the original algorithm. The first approximation, the averaged range process, has the same expected
number of iterations to convergence as the original process.
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1. Introduction

Stochastic global optimisation methods, such as simulated annealing [6] and ge-
netic algorithms [4], are widely used to solve large scale non-linear optimisation
problems. A vexing issue in such work is that of knowing when to conclude a run;
how do we know when we are very close to the optimum?

A number of authors, for example [8, 11], have explored the convergence of
simulated annealing. Under specified conditions they are able to describe the asymp-
totic convergence rate of an algorithm. For the practitioner, however, specific in-
formation about the number of iterations to run is also needed. For this we need to
know something about the distribution of the number of iterations to termination
(that is, first obtaining a good enough objective function value) for the algorithm.

Results of this type are available for pure adaptive search (PAS) and its gen-
eralisation, hesitant adaptive search (HAS), both Markov range processes whose
distribution to termination is fully understood [2, 12, 13]. Convergence rates for
non-Markov range processes have been considered in [1]; and for adaptive search,
an idealisation of simulated annealing, in [10].

The aim of this paper is to approximate the domain-based stochastic process
(DP) of a real algorithm with a range-based Markov process that yields to analysis.
Three intermediate processes are used in the approximation. Firstly, the range pro-
cess (RP) is defined as the image of the domain process in the range. Secondly,
range distributions implied at various domain points are mixed at each iteration
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to define a time-inhomogeneous Markov process in the range, the averaged range
process (ARP). The third process is constructed using the limits over time of the
transition matrices appearing in the second process. The asymptotic averaged range
process (AARP) constructed in this way is time-homogeneous and Markovian.
Finally, for ease of analysis, this process may be approximated by another Markov
range process, backtracking adaptive search (BAS). This is a further generalisation
of PAS and HAS, for which the analysis is currently being prepared.

Linking an algorithm with a BAS approximation serves two purposes. It provides:
1. Information about the convergence rate of the optimisation algorithm, and
2. A means for investigating how to tune an optimisation algorithm to a given

problem.
This work initiates a connection between adaptive search theory and real search

algorithms. A framework is laid out and some encouraging theoretical results are
presented. Much still remains to be done, however, to complete the picture.

The paper is arranged as follows. In the next section we describe a generic
stochastic global optimisation algorithm, upon which the subsequent analysis
centres. The sequence of approximations is then described, taking us from the
range process through to a backtracking adaptive search process in three stages.
The main analytical result of the paper appears in Subsection 2.1, focusing on
the first approximation. The range process is replaced with a time-inhomogeneous
Markov chain, and it is shown that these two processes have the same expected
number of iterations until convergence. We conclude with a summary in Section 3.

2. Approximating a stochastic global optimisation algorithm

The problem under consideration is the very general global optimisation problem

minimise f (x), subject to x ∈ S

where S is a measurable space and f : S → IR is a measurable function. We
now introduce a general form for stochastic global optimisation algorithms. We
are given an initial domain distribution δ0 and a local search measure for each
x ∈ S. The local search measure at x is used to generate the next candidate point
in the domain.

Generic stochastic global optimisation algorithm

Step 1 Generate X0 in S according to δ0. Set Y0 = f (X0) and n = 0.

Step 2 Choose Z according to a local search measure at Xn. If f (Z) ≤ Yn then set
Xn+1 = Z. If f (Z) > Yn then set Xn+1 = Z with a certain probability (which
may depend on Xn and Z) or Xn+1 = Xn otherwise. Set Yn+1 = f (Xn+1).

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to
Step 2.
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To investigate the behaviour of this algorithm, we set up a sequence of stochastic
processes, each approximating the sequence of objective function values obtained
by the generic stochastic global optimisation algorithm. As we move through the
sequence of processes, the accuracy of the approximation will slowly deteriorate,
but in doing so we reach an approximation with behaviour that can be expected to
yield to analysis. We will discuss the following stochastic processes:

Domain process: This is the sequence of domain points generated by the generic
stochastic global optimisation algorithm.

Range process: This is the sequence of function values generated by the generic
stochastic global optimisation algorithm.

Averaged range process: This is a time-inhomogeneous Markov process in the
range based on the range process. It is presented in Subsection 2.1.

Asymptotic averaged range process: This is obtained by homogenising the aver-
aged range process. It is presented in Subsection 2.2.

Backtracking adaptive search: This is obtained by requiring the transition distri-
butions in the range, conditioned on improvement or worsening, to be restrictions
of a single range probability measure ρ. It is presented in Subsection 2.3.

The first of these processes takes on values in the objective function’s do-
main, whereas the others assume values in the range. This important distinction
is illustrated in Figure 1.

The domain process (Xn) as defined above is Markovian. This is general enough
to encompass the Metropolis algorithm [9], genetic algorithms [4] (with S then a
product space, the number of factors being determined by the population size) and
certain evolutionary algorithms.

Note that the range process (Yn) is not in general Markovian, despite being
the image under f of the Markov chain (Xn). We can interpret the Markovian
property of the sequence (Xn) as saying that the process has no memory; if we
can see the current value of Xn then we know the complete state of the process,
and no other information will help us to predict Xn+1. If we can see only the
range process, however, then unless the objective function f is invertible, we are
receiving information about the domain process through a noisy channel. Better
information may be found if more than just the most recent range value is used.
For instance, suppose the current range value is 2. There may be many points in
the domain where the objective function takes this value. Now suppose also that at
the previous iteration the range value was 3, and that there is only one domain point
with value 2 reachable in one iteration from a domain point with value 3. Knowing
the current and previous range values allows us to deduce the domain position,
and consequently the exact distribution of range values at the next iteration. The
current value of Yn alone allows only an estimation of the range distribution at the
next iteration; thus (Yn) is not Markovian in this case.
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Figure 1. Steps in the approximation of the domain process with a backtracking adaptive
search process.

This paper considers only first-order Markov approximations to the range pro-
cess; redefinition of the state space to include more than one iteration in each
state would easily allow generalisation to higher-order Markov approximations,
perhaps providing worthwhile improvement in the accuracy of the approximation.
This procedure is common in some other search algorithms, such as tabu search [3].

We now introduce an example which will serve to illustrate the concepts intro-
duced throughout the paper.

Example. Let S = {1, 2, 3} and f (1) = 1, f (2) = 2 and f (3) = 2. A search
algorithm to find the minimum in this simple example is described by a Markov
domain process with transition matrix

Next state
1 2 3

1
Current state 2

3


 1 0 0

0 0 1
1
2

1
2 0


 .

Suppose the process is equally likely to begin in each of the domain states.
Then standard theory [5] provides that the expected number of iterations before
convergence for this process is 21

3 . The variance is 8 2
9 .
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The range process based on this domain algorithm has an absorbing state at the
low level, 1. At the high level, 2, RP has two possible range distributions for the
next iteration: if it is at domain state 2 then it will move to domain state 3 with
certainty and thus remain at the high level; if it is at domain state 3 then RP is
equally likely to remain at the high level or move to the low level.

We now present in detail the three stages of approximation of the range process.

2.1. THE AVERAGED RANGE PROCESS

In the first stage RP is approximated with an inhomogeneous Markov process,
ARP. The following derivation assumes a discrete domain S. Convergence is held
to occur when Yn ≤ y for some real number y, chosen before algorithm commence-
ment; domain locations with objective function value not greater than y are lumped
into one absorbing state x1 with arbitrary objective function level y1 ≤ y. It is
assumed that all other domain locations are transient. The domain search algorithm
may thus be considered as a Markov process with the following transition matrix,
in block form:

P =
[

1 0
r Q

]
.

The first row of this matrix, showing transitions from the absorbing state, has a one
in the first position and zeros elsewhere. The column vector r gives each transient
state’s probability of moving directly to the absorbing state. The remaining sub-
matrix Q is substochastic, and gives the transition probabilities between all of the
transient states.

We let the transient domain states be x2, x3, . . . , xl and the transient objective
function levels be y2, y3, . . . , ym. We then let δn denote a row vector of length l

comprising the probabilities of occupying each of the l domain states at the nth
iteration. Then δn+1 = δnP for all n ≥ 0.

Here is an informal description of the averaged range process. At the nth iter-
ation ARP is at level Yn and the domain process is at some point in f −1(Yn). The
probability of being at each of these domain states is determined by the normalised
restriction of the domain distribution at the nth iteration to f −1(Yn). Mappings of
the transition distributions at each candidate domain state into the range (termed
local range distributions) are then mixed according to their domain weightings.
This produces an averaged range distribution at the nth iteration. Figure 2 illustrates
the way in which ARP uses this convex combination of local range distributions of
the search algorithm.

We now give a formal definition of the averaged range process. The initial dis-
tribution of ARP is identical to that of RP, being the image in the range of the initial
distribution of the original domain process. At the nth iteration, suppose that ARP
is in state yi . Then the probability that ARP moves to state yj at the next iteration
is found by summing all the probabilities of distinct transitions in the domain from
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Figure 2. The Markovian approximation to the range process uses a mixture of local range
distributions, with weights determined by the domain process. In this figure, the current range
value may be due to either of two domain points, each of which gives rise to a probability
distribution for the range value after one further iteration. These probability distributions are
mixed as shown.

f −1(yi) to f −1(yj ). That is, the ARP transition matrix at the nth iteration, Rn, is
given by

(Rn)ij = P(Yn+1 = yj |Yn = yi)

=
∑

xp∈f −1(yj )

∑
xk∈f−1(yi),P (xn=xk)>0

P(Xn = xk|Yn = yi)P(Xn+1 = xp|Xn = xk)

for n ≥ 0 and i, j ∈ {1, 2, . . . , m} when P(Yn = yi) 
= 0, and (Rn)ij is arbitrarily
set to zero otherwise.

Define the domain weightings used by ARP, γn, based only on the current range
level and iteration number, as

γn(i) = P(Xn = xi |Yn = f (xi)) = P(Xn = xi)

P(Yn = f (xi))
= δn(i)∑

{j :f (xj )=f (xi)}
δn(j)

(1)

for i ∈ {1, 2, . . . , l} where this is defined. Otherwise, arbitrarily assign γn(i) = 0.
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We now define an l × m matrix M mapping from domain states to objective
function states by

Mij =
{

1 if f (xi) = yj ,
0 otherwise.

Then

Rn = MTdiag(γn)PM (2)

where diag(γn) is a diagonal matrix with entries of γn on the diagonal.
The sequence of processes studied in this paper is designed to span the gap

between, at one end, the generic stochastic global optimisation algorithm we wish
to understand, and at the other end, BAS, which we expect to be able to analyse.
The value of this study is determined by the quality of the approximations. The
main analytic result of this paper, presented in this subsection, is that the averaged
range process and the range process (and therefore the domain process) share the
same expected number of iterations before termination.

Where (Yn) goes at each iteration will in general depend on more than the last
step. By defining ARP based only on the current level, therefore, we distance it
somewhat from RP. Despite this, the above definition implies that, while the aver-
aged range process and the range process can in general differ in joint distribution,
they must be equal in marginal distribution at each iteration.

THEOREM 2.1 At any given iteration, the range process and the averaged range
process have the same marginal distribution.

For the proof see the appendix. Further, the following result (similar to a result
in [1]) holds true for the mean number of iterations to convergence:

COROLLARY 2.1 Let Nd be the number of iterations to convergence for the
generic stochastic global optimisation algorithm in a finite domain. For the range
process let Nr be the number of iterations to convergence, while for the averaged
range process let Na be the number of iterations to convergence. Then

E(Nd) = E(Nr) = E(Na).

The proof appears in the appendix. It makes use of a truncation transformation
Ti , equal to the identity matrix of size i (Ii) with the first column removed. This
matrix has the effect of removing the first component of a probability position
vector, corresponding to the probability of being in the absorbing state. A vector of
i ones is also denoted by 1i .

The processes can differ in the variance of the number of iterations to conver-
gence; using the notation described above, the difference in variance between RP
and ARP can be written as
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2δ0

(
Tl

(
(Il−1 − Q)−1

)2
1l−1 − MTm

(
Im−1 + T T

mR0Tm + T T
mR0TmT T

mR1Tm + · · · )2 1m−1

)
.

Example (continued) Formulating the example problem in terms of this subsec-
tion, we find that

P =

 1 0 0

0 0 1
1
2

1
2 0


 , δ0 = [

1
3

1
3

1
3

]
and M =


 1 0

0 1
0 1


 .

For this cyclic example, explicit expressions for Pn are available as

Pn = 2− n
2


 2

n
2 0 0

2
n
2 − 1 1 0

2
n
2 − 1 0 1


 for n even, while

Pn = 2− n+1
2




2
n+1

2 0 0
2

n+1
2 − 2 0 2

2
n+1

2 − 1 1 0


 for n odd.

Thus, using (1),

γn = [
1 1

2
1
2

]
for n even, while γn = [

1 1
3

2
3

]
for n odd.

All the ARP transition matrices can now be found explicitly by application of (2).
Thus

Rn =
[

1 0
1
4

3
4

]
for n even, while Rn =

[
1 0
1
3

2
3

]
for n odd.

Since there is only one absorbing domain state and corresponding range level, the
first row and column of M are vectors of zeros with an initial one, and the first
element of γn is a one. Also the first rows of transition matrices P and Rn are always
vectors of zeros with an initial one. In this small example the transient portions
of the range transition matrices Rn are single numbers, giving the probability of
staying at the transient range level after one transition.

The expectation of Na can now be found as follows:

E(Na) =
∞∑
n=1

P(Na ≥ n)

= 2

3
+ 2

3
· 3

4
+ 2

3
· 3

4
· 2

3
+ 2

3
· 3

4
· 2

3
· 3

4
+ · · ·

= 2
1

3
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This is the same result as that stated earlier, from direct analysis of the process in
the domain. Thus ARP preserves the expected number of iterations to convergence
of the domain process it approximates.

The variance, however, is found to be 8 5
9 . Thus the variance of ARP is not in

general the same as that of the domain process it approximates.

2.2. THE ASYMPTOTIC AVERAGED RANGE PROCESS

While ARP is a time-inhomogeneous Markov process, BAS is defined below as
a time-homogeneous Markov process. To link the two, it is necessary to remove
the iteration dependence of ARP. This is done by observing that the transition
matrices Rn for ARP settle down in the limit to a constant matrix, or, possibly, to
oscillation between multiple constant matrices. (One way to see this is via Jordan
decomposition; the details are left to the interested reader.)

We define the asymptotic averaged range process (AARP) to be the time-homo-
geneous Markov process with initial distribution equal to that in both the range
process and the averaged range process, and with transition matrix

R = lim
N→∞

1

N

N−1∑
n=0

Rn,

where the matrices Rn are the transition matrices describing the averaged range
process. Except in special cases, this expression simplifies to R = lim

n→∞ Rn.

Example (continued) The example illustrates the periodic case. The limiting trans-
ition matrix may be found as follows:

R = lim
N→∞

1

2N

2N−1∑
n=0

Rn = lim
N→∞

1

2N

N−1∑
n=0

([
1 0
1
4

3
4

]
+

[
1 0
1
3

2
3

])

= lim
N→∞

1

2N
N

[
2 0
7

12
17
12

]

=
[

1 0
7
24

17
24

]

Applying standard theory to AARP using this limiting transition matrix gives
an expected number of iterations to convergence of 2

3

(
1 − 17

24

)−1 = 22
7 . This is

close to the value for the domain process, 2 1
3 . Some means of quantifying the error

now introduced by the approximation to AARP is required; this remains an area
for future research.
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2.3. BACKTRACKING ADAPTIVE SEARCH

Over the past decade the pure adaptive search algorithm has been defined and
analysed [13]. It has been extended to hesitant adaptive search, now also fully
understood [12]. In this subsection we extend HAS to a new stochastic algorithm,
BAS. This process is proposed in anticipation that BAS will provide the basis for a
sufficiently flexible family of homogeneous Markov range processes for approxim-
ating the asymptotic averaged range distributions of stochastic global optimisation
algorithms.

At each iteration, the objective function value either improves, remains at the
current level, or worsens. It is assumed that the distribution of the next objective
function value is then determined using a single distribution. This is acknowledged
to be restrictive.

Initially BAS samples Y0 from f (S) according to the range probability meas-
ure ρ with cumulative distribution function p. At each iteration thereafter, one of
three things happens. With a known probability b(Yn), the algorithm will make an
improvement, sampling the next evaluation point Yn+1 according to the normalised
restriction of ρ to the current improving set. With a second known probability
w(Yn), the algorithm will backtrack, sampling the next evaluation point Yn+1 ac-
cording to the normalised restriction of ρ to the current worsening set. Otherwise,
the algorithm will hesitate, remaining at the current evaluation point. The functions
b and w depend only on the current level. They are assumed to be continuous and
to have bounded variation. We now present the algorithm formally.

Backtracking adaptive search

Step 1 Generate Y0 in f (S) according to ρ. Set n = 0.

Step 2 With probability b(Yn) choose Yn+1 according to the normalised restric-
tion of ρ to (−∞, Yn). With probability w(Yn) choose Yn+1 according to the
normalised restriction of ρ to (Yn,∞). Otherwise set Yn+1 = Yn.

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to
Step 2.

Note that HAS is the special instance of BAS occurring when w(t) = 0 for all
t ∈ f (S). In turn, PAS is the special instance of HAS occurring when b(t) = 1 for
all t ∈ f (S). Thus PAS must improve at every iterate.

Let Nh be the number of iterations before termination for HAS. The mean of
Nh is

E(Nh) =
∫ ∞

y

dρ(t)

b(t)p(t)
. (3)

The variance of Nh is

Var(Nh) =
∫ ∞

y

(
2

b(t)
− 1

)
dρ(t)

b(t)p(t)
.



CONVERGENCE RATES 281

These results can be found in [12], together with analogous results for the discrete
problem. Backtracking adaptive search awaits full analysis. For the discrete case,
some convergence theory for BAS has been developed in [7].

The increasingly general families of homogeneous first-order Markov chains
provided by PAS, HAS and BAS can serve to approximate the asymptotic averaged
range process of a stochastic optimisation algorithm.

Example (continued) The formulation of AARP in the example can be directly
transferred into the framework of HAS. In this case there is one transient level
and one absorbing level. The range probability measure ρ assigns weight 1

3 to
the absorbing level and 2

3 to the transient level. Thus the cumulative distribution
function p is the piecewise constant function

p(t) =



0, t < 1,
1
3 , 1 ≤ t < 2,
1, 2 ≤ t.

The bettering probability b(2) is given from the transition matrix in AARP as 7
24 .

Applying the discrete case of (3) then gives the expected number of iterations until
convergence as 2 2

7 , as before. A more complicated approximation process than this
would be required for richer examples.

3. Conclusion

This paper describes a framework for approximating the convergence rate of an
arbitrary Markovian optimisation algorithm, by linking it to a tractable stochastic
process via a chain of intermediate stochastic processes. Each process in the chain
is derived from the previous one, and can be used to approximate its convergence
behaviour.

In addition, a start has been made on the detailed investigation of the chain
of processes. The links from the domain process to the range process, and from
there to the averaged range process, have been studied. It has been shown that
these three processes all terminate in the same number of iterations in expectation.
Numerical experiments suggest that the asymptotic averaged range process usually
approximates the averaged range process quite closely.

The complete strategy for analysis enables us to predict how long a particular
stochastic global optimisation algorithm should be run to reach a set level. The
effectiveness of the stochastic global optimisation algorithm on a particular prob-
lem is thus measured. This information is also useful for tuning the algorithm, for
example, through tailoring search region to landscape.
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4. Appendix

Proof of Theorem 2.1. Denote the probability distribution at the nth iteration
of ARP by πn. The probability distribution of range states in RP is defined as the
image of δn under f . The theorem may thus be stated as

πn = δnM.

The proof is by induction. The initial averaged range distribution is the image
in the range of the initial domain distribution, so that π0 = δ0M.

Now assume the result for some integer k ≥ 0. Then[
δkMMTdiag(γk)

]
(i) = [

πkM
Tdiag(γk)

]
(i) by hypothesis

= P(Yk = f (xi))P(Xk = xi|Yk = f (xi))

= P(Xk = xi)

= δk(i) (4)

when P(Yk = f (xi)) > 0. If P(Yk = f (xi)) = 0, ['kM
T diag(δk)](i) = 0 = δk(i)

so (4) still holds. Thus,

πk+1 = πkRk by definition
= δkMMTdiag(γk)PM by hypothesis and using (2)
= δkPM from (4)
= δk+1M.

Hence by induction πn = δnM for all n ≥ 0.

Proof of Corollary 2.1. The proof uses the relationship TlQ
n = PnTl , obtained

by recognising

TlQ
n =

[
0

Il−1

]
Qn

=
[

0
Qn

]

as the truncation under Tl of Pn.
Standard theory [5] then gives

E(Nd) =δ0Tl(Il−1 − Q)−11l−1

=δ0Tl(Il−1 + Q + Q2 + · · · )1l−1

=(δ0Tl + δ0TlQ + δ0TlQ
2 + · · · )1l−1

=(δ0Tl + δ0PTl + δ0P
2Tl + · · · )1l−1

=(δ0 + δ1 + δ2 + · · · )Tl1l−1. (5)
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The range process is defined as the image of the domain process under f . Con-
sequently, the number of iterations to convergence for this process is stochastic-
ally equivalent to the number of iterations to convergence in the original domain
algorithm, and in particular E(Nr) = E(Nd).

Reference to RP is by way of a stepping stone to the new Markov process in the
range, ARP. By analogy with (5), the expected number of iterations to convergence
for ARP is

E(Na) =(π0 + π1 + π2 + · · · )Tm1m−1

=(δ0M + δ1M + δ2M + · · · )Tm1m−1

=(δ0 + δ1 + δ2 + · · · )MTm1m−1.

Since M is defined as a matrix of zeros with exactly one entry of one in each row,
it follows that

E(Na) =(δ0 + δ1 + δ2 + · · · )Tl1l−1

=E(Nd).

A similar development in [1] proceeds from different initial assumptions.
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